Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
China CDC Wkly ; 2(34): 645-650, 2020 Aug 21.
Article in English | MEDLINE | ID: covidwho-1355404

ABSTRACT

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: Coronavirus disease 2019 (COVID-19) has become a global pandemic, while the profile of antibody response against the COVID-19 virus has not been well clarified. WHAT IS ADDED BY THIS REPORT?: In this study, 210 serum samples from 160 confirmed COVID-19 cases with different disease severities were recruited. The IgM, IgA, IgG, and neutralizing antibodies (NAb) against COVID-19 virus were determined. Our findings indicated that four antibodies could be detectable at low levels within 2 weeks of disease onset, then rapidly increasing and peaking from the 3rd to 5th Weeks. NAb decreased between 5th and 9th Weeks, and a higher IgM/IgA level was observed in the groups with mild/moderate severity within 2 weeks (p<0.05), while all 4 types of antibodies were higher in the group with severe/critical severity after 4 weeks (p<0.05). WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Our study on the dynamics of serological antibody responses against COVID-19 virus among COVID-19 patients complements the recognition regarding the humoral immune response to COVID-19 virus infection. The findings will help in the interpretation of antibody detection results for COVID-19 patients and be beneficial for the evaluation of vaccination effects.

3.
Microbiol Spectr ; 9(1): e0027321, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1341310

ABSTRACT

The SARS-CoV-2 B.1.1.7 variant has increased sharply in numbers worldwide and is reported to be more contagious than the nonvariant. Little is known regarding the detailed clinical features of B.1.1.7 variant infection. Data on 74 COVID-19 cases from two outbreaks in two districts of Beijing, China were extracted from a cloud database, including 41 cases from Shunyi District (Shunyi B.1.470 group) and 33 from Daxing (Daxing B.1.1.7 group) from December 25, 2020 to January 17, 2021. We conducted a comparison of the clinical characteristics. Seven clinical indicators of the Daxing B.1.1.7 group were significantly higher than those of the Shunyi group, including the proportion with fever over 38°C, the levels of C-reactive protein (CRP), serum amyloid A (SAA), creatine kinase (CK), d-dimer (DD), and CD4+ T lymphocytes (CD4+ T), and the proportion with ground-glass opacity (GGO) in the lung (P values of ≤0.05). After adjusting for age, B.1.1.7 variant infection was a risk factor for elevated CRP (P = 0·045), SAA (P = 0·011), CK (P = 0·034), and CD4+ T (P = 0.029) and for the presence of GGO (P = 0.005). The median threshold cycle (CT) value of reverse transcriptase quantitative PCR (RT-qPCR) tests of the N gene target in the Daxing B.1.1.7 group was significantly lower (P = 0.036) than that in the Shunyi B.1.470 group. Clinical features, including a more serious inflammatory response, pneumonia, and a possibly higher viral load, were detected in the cases infected with B.1.1.7 SARS-CoV-2. The B.1.1.7 variant may have increased pathogenicity. IMPORTANCE The SARS-CoV-2 B.1.1.7 variant, which was first identified in the United Kingdom, has increased sharply in numbers worldwide and was reported to be more contagious than the nonvariant. To our knowledge, no studies investigating the detailed clinical features of COVID-19 cases infected with the B.1.1.7 variant have been published. Local epidemics have rarely occurred in China, but occasionally, a small clustered outbreak triggered by an imported SARS-CoV-2 strain with only one chain of transmission could happen. From late 2020 to early 2021, two clustered COVID-19 outbreaks occurred in Beijing, one of which was caused by the B.1.1.7 variant. The COVID-19 patients from the two outbreaks received similar clinical tests, diagnoses, and treatments. We found that the B.1.1.7 variant infection could lead to a more serious inflammatory response, acute response process, more severe pneumonia, and probably higher viral loads. This therefore implies that the B.1.1.7 variant may have increased pathogenicity.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , SARS-CoV-2/classification , SARS-CoV-2/genetics , Adult , CD4-Positive T-Lymphocytes , China/epidemiology , Cohort Studies , Female , Humans , Lung/virology , Male , Middle Aged , Prospective Studies , Risk Factors , Viral Load , Whole Genome Sequencing
4.
China CDC Wkly ; 3(30): 637-644, 2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1317436

ABSTRACT

What is already known about this topic? Though coronavirus disease 2019 (COVID-19) has largely been controlled in China, several outbreaks of COVID-19 have occurred from importation of cases or of suspected virus-contaminated products. Though several outbreaks have been traced to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) isolated on the outer packaging of cold chain products, live virus has not been obtained. What is added by this report? In September 2020, two dock workers were detected as having asymptomatic SARS-CoV-2 infection using throat swabs during routine screening in Qingdao, China. Epidemiological information showed that the two dock workers were infected after contact with contaminated outer packaging, which was confirmed by genomic sequencing. Compared to the Wuhan reference strain, the sequences from the dock workers and the package materials differed by 12-14 nucleotides. Furthermore, infectious virus from the cold chain products was isolated by cell culture, and typical SARS-CoV-2 particles were observed under electron microscopy. What are the implications for public health practice? The international community should pay close attention to SARS-CoV-2 transmission mode through cold chain, build international cooperative efforts in response, share relevant data, and call on all countries to take effective prevention and control measures to prevent virus contamination in cold-chain food production, marine fishing and processing, transportation, and other operations.

5.
China CDC Wkly ; 3(21): 441-447, 2021 May 21.
Article in English | MEDLINE | ID: covidwho-1237076

ABSTRACT

What is known about this topic? Few major outbreaks of coronavirus disease 2019 (COVID-19) have occurred in China after major non-pharmaceutical interventions and vaccines have been deployed and implemented. However, sporadic outbreaks that had high possibility to be linked to cold chain products were reported in several cities of China.. What is added by this report? In July 2020, a COVID-19 outbreak occurred in Dalian, China. The investigations of this outbreak strongly suggested that the infection source was from COVID-19 virus-contaminated packaging of frozen seafood during inbound unloading personnel contact. What are the implications for public health practice? Virus contaminated paper surfaces could maintain infectivity for at least 17-24 days at -25 ℃. Exposure to COVID-19 virus-contaminated surfaces is a potential route for introducing the virus to a susceptible population. Countries with no domestic transmission of COVID-19 should consider introducing prevention strategies for both inbound travellers and imported goods. Several measures to prevent the introduction of the virus via cold-chain goods can be implemented.

6.
Emerg Microbes Infect ; 9(1): 2501-2508, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-915844

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a pandemic with increasing numbers of cases worldwide. SARS-CoV-2, the causative virus of COVID-19, is mainly transmitted through respiratory droplets or through direct and indirect contact with an infected person. The possibility of potential faecal-oral transmission was investigated in this study. We collected 258 faecal specimens from nine provinces in China and detected the nucleic acid of SARS-CoV-2 using real-time RT-PCR. Vero cells were used to isolate the virus from SARS-CoV-2 nucleic acid positive samples, after which sequencing of Spike gene in eight samples was performed. In all, 93 of 258 (36%) stool samples were positive for SARS-CoV-2 RNA. The positive rates of critical, severe, moderate, and mild patients were 54.4%, 56.1%, 30.8%, and 33.3%, respectively. The content of nucleic acid increased within 2 weeks after the onset of the disease. From the perspective of clinical typing, the nucleic acid can be detected in the faeces of critical patients within two weeks and until four to five weeks in the faeces of severe and mild patients. SARS-CoV-2 was isolated from stool specimens of two severe patients. Four non-synonymous mutations in Spike gene were newly detected in three stool samples. A small number of patients had strong faecal detoxification ability. The live virus in faeces could be an important source of contamination, which may lead to infection and further spread in areas with poor sanitary conditions. The findings of this study have public health significance and they should be considered when formulating disease control strategies.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Feces/virology , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , COVID-19/diagnosis , COVID-19/virology , Child , Child, Preschool , China/epidemiology , Chlorocebus aethiops , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Mutation , Phylogeny , Public Health , Real-Time Polymerase Chain Reaction , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL